B. Tech. Semester -III (Mechanical Engineering-Major)

	Course			BOS	S	eachin cheme ars.)	0	Total		Examination Scheme						
SN	Category	Course Code	Name of Course	005				Credit	Theor	y				Practical		
					(Th)	TU	Р		Exam Hrs.	SEE	CIE	Min.	SEE	CIE	Min.	
1	PCC-II		Fluid Mechanics and Hydraulic Machines	Mechanical	3	-	-	3	3	70	30	45	-	-	-	
2	PCC-II	DIVILUI	Fluid Mechanics and Hydraulic Machines Lab	Mechanical	-	-	2	1	-	_	_	-	25	25	25	
3	PCC-III	BME3T10	Kinematics of Machines	Mechanical	3	-	-	3	3	70	30	45	-	-	-	
4	MDM-I		Multidisciplinary Minor-I	Mechanical	2	-	-	2	3	70	30	45	-	-	-	
5	OE-I		Refer MDM Basket Open Elective – I Refer OE Basket	Mechanical	3	-	-	3	3	70	30	45	-	-	-	
6	OE-I	BMEOE3P01	Open Elective – I Lab Refer OE Basket	Mechanical	-	-	2	1	-	-	-	-	25	25	25	
7	HSSM-I	BMEH3T01	Introduction to Innovation and Entrepreneurship	Mechanical	2	-	-	2	3	70	30	45	-	-	-	
8	VEC-I	BMEVE3T01	Constitution of India	ASH	2	-	-	2	3	70	30	45	-	-	-	
9	CEP	BMECE3P01	Community Engagement Project/Mini Project	Mechanical	-	-	4	2	-	-	-	-	50	50	50	
			Total (800)		15	-	08	19		420	180		100	100		

B. Tech. Sem-IV (Mechanical Engineering-Major)

SN	Course	Course Code	Name of Course	BOS	(111.5.)		Total				natio	ı Scheme			
~	Category							Credit		Theor	у		I	Practical	
					(Th)	TU	Р		Exam Hrs.	SEE	CIE	Min.	SEE	CIE	Min.
1	PCC-IV	BME4T11	Engineering Thermodynamics	Mechanical	3	-	-	3	3	70	30	45	-	-	-
3	PCC-V	BME4T12	Manufacturing and Machining Processes	Mechanical	3	-	-	3	3	70	30	45	-	-	-
4	PCC-V	BME4P12	Manufacturing and Machining Processes Lab	Mechanical	-	-	2	1	-	-	-	-	25	25	25
5	PCC-VI	BME4P13	Machine Drawing and Solid Modelling	Mechanical	-	-	4	2	-	-	-	-	50	50	50
6	MDM-II	BMEMD4T02	Multidisciplinary Minor-II Refer MDM Basket	Mechanical	2	-	-	2	3	70	30	45	-	-	-
7	OE-II	BMEOE4T02	Open Elective – II Refer OE Basket	Mechanical	2	-	-	2	3	70	30	45	-	-	-
8	AEC-II	BMEAE4T02	Aptitude and Reasoning	Mechanical	2	-	-	2	3	70	30	45	-	-	-
9	HSSM-II	BMEHM4T02	Industrial Engineering and Management	Mechanical	2	-	-	2	3	70	30	45	-	-	-
10	VEC-II	BMEVE4T02	Environmental Science	ASH	2	-	-	2	3	70	30	45	-	-	-
11	VSEC-III	BMEVSE4P02	Introduction to MS-Office	Mechanical	-	-	4	2	-	-	-	-	-	50	25
			Total(900)		16	-	10	21		490	210		75	125	

Exit option: Award of UG Diploma in Major and Minor with 8 Credits and an additional 8 credits in skill-based courses, internship, mini projects etc.

Sem:	III rd	Te	otal Hours Distribution	per week			
Total	Credit:3	Lecture(L):3 Hrs	Tutorial/Activity(T/A)	: 0 Hr			
Subje	ct Code	e BME3T09 Fluid Mechanics and Hydraulic Machines					
Exam	ination Scheme						
Intern	nal Marks:	University Marks:	Minimum Passing Marks:	Examination Duration:			
	30 Marks	70 Marks	45 Marks	3 Hours			
Sr. No.	Course Objective The objective of		1				
1				ic condition and apply the rinciples of various meas			
2	To establish the relationship between various properties & apply mathematical treatment to various problems related to fluid system & their Design.						
3	To explain the working Principles of Fluid mechanics and their Practical applications in designing the fluid systems						
4	To introduce va	arious principles & de	esign of Hydraulic Mac	hines i.e. Turbines.			
5	To appreciate the design of Hydraulic Machines, ie Centrifugal and Positive Displacement Pump						
			urse Outcomes				
After			the student will be able				
CO1				dition, types of flow & flov ions on hydraulic compo			
CO2	2 Explain behavior of fluid in motion condition and application of Bernoulli's equation to fluid flow measuring devices.						
CO3			s of fluid flow through				
CO4	Classify different layout of hydro-electric power plant and analyze design characteristics of hydraulic machines i.e. turbines (impulse and reaction), Pelton turbine , Francis turbine, propeller turbine and Kaplan turbine						
CO5	Explain the wo practical applic	U 1	ign of Centrifugal and	reciprocating pump & its			

SYLLABUS	
Contents	No of hours
UNIT-I Fluid Properties: Types of fluids, Mass Density, Specific Weight, Specific Gravity, Newton's Law of Viscosity, Dynamic Viscosity, Stroke's Theorem, Surface Tension, Capillarity, Types of Flow- steady, unsteady, uniform, non-uniform, laminar, turbulent. Fluid Statics :- Pressure, Measurement of pressure using manometers, Hydrostatic law, Pascal's law, Pressure at a point, Total pressure, Centre of pressure, Pressure on a plane (Horizontal, vertical, Inclined) Archimedes' principle, Buoyancy and stability of floating and submerged bodies, Metacentric height	

UNIT-II Fluid Dynamics Introduction to Navier-Stroke's Equation, Euler equation of motion along a stream line, Bernoulli's equation, application of Bernoulli's equation to pitot tube, Venturimeter, orifices, orifice meter.	08
UNIT-III Flow Through Pipes Flow Through Pipes: TEL, HGL, Energy losses through pipe, Darcy-Weisbach equation, Minor losses in pipes, TEL, HGL, Moody diagram, pipes in series and parallel, Siphons, Transmission of power.	08
UNIT-IV Theory of turbo machines Turbo Machine classification, Elements of hydro-electric power plant, Impulse Turbine:- principles of operation, constructional features, Velocity Diagram and Analysis, Design parameters, Performance characteristics, Governing. Reaction or pressure Turbine:- principles of operation, Classification, Degree of reaction, comparison over Pelton Turbine, Draft tube, Cavitation in Turbine, Francis Turbine: Constructional features, Installations, Velocity Diagram and analysis, Design parameters, Performance characteristics, Governing. Propeller Turbine, Kaplan Turbine: -Constructional features, Velocity Diagram and analysis,	09
UNIT- V Hydrodynamic pumps: Centrifugal pumps:- Principle of operation, Classification, Component of Centrifugal Pump, Various heads, Velocity triangles and their analysis, N.P.S.H., Cavitation's in pumps, Installation and operation, Performance characteristics, Introduction to self- priming pumps. Reciprocating pump : Basic principle, Classification, Main Components, Slip, Work Done, Indicator Diagram, Cavitation's, Air vessels	09

References:

Text Books Recommended:

- 1. Fluid Mechanics, Dr. R.K. Bansal, Laxmi Publication (P) Ltd. New Delhi
- 2. Fluid Mechanics & Hydraulic Machines, R.K. Rajput, S. Chand & Company Ltd
- 3. Fluid Mechanics & Fluid Power Engineering D. S. Kumar, S.K. Kataria & Sons
- 4. Introduction to Fluid Mechanics, James E.A., John and Haberm W.A., Prentice Hall of India

Reference Books Recommended:

- 1. Introduction to Fluid Mechanics, James E.A., John and Haberm W.A., Prentice Hall of India
- 2. Fluid Mechanics, Cengel & Cimbla, Tata McGraw Hill
- 3. Fluid Mechanics, Jain A.K., Khanna Publication

Sem: l	[]] rd	To	otal Hours Distribution	per week			
Total	Credit:1	Practical: 2 Hrs / Week	Tutorial/Activity(T/A)	: 0 Hr			
Subjeo	ct Code :	BME3P09	Fluid Mechanics and Hydraulic Machines (Practical)				
Exami	ination Scheme:						
Practi Marks	cal Internal	Practical University Marks:	Minimum Passing Marks:	Examination Duration:			
	25 Marks	25 Marks	25 Marks	NA			
		Cor	urse Outcomes				
After s	successful comp	letion of this course t	he student will be able	e to:			
CO1	Verify the law c	of conservation of end	ergy for fluid flow.				
CO2	2 Apply Frictional losses and Hydraulic co-efficient in the pipe flow.						
CO3	3 Estimate the Performance characteristics of Pelton Turbine.						
CO4	Estimate the Po	erformance characte	ristics of Francis Turbi	ne & Kaplan Turbine.			
CO5	Estimate the P	erformance characte	ristics of Centrifugal P	ump & Reciprocating Pump).		

	SYLLABUS					
Mir	imum Eight out of the following practical's shall be performed:					
Sr No	List of Drastical's					
Sr No	List of Practical's					
01	To verify Bernoulli's theorem.					
02	To estimate the various friction losses in pipe.					
03	To determine the type of flow by calculating the Reynold's Number					
04	To find the value of co-efficient of discharge of a given venturimeter fitted in a pipe.					
05	To find the value of co-efficient of discharge for a given orifice meter.					
06	To Estimate the Performance characteristics of Pelton wheel.					
07	To Estimate the Performance characteristic of Francis Turbine.					
08	To Estimate the Performance characteristic of Kaplan Turbine.					
09	To Estimate the Performance characteristic of Variable Centrifugal speed pump					
10	To Estimate the Performance characteristic of Reciprocating pump.					

References:

Text Books Recommended:

- 1. Fluid Mechanics, Dr. R.K. Bansal, Laxmi Publication (P) Ltd. New Delhi
- 2. Fluid Mechanics & Hydraulic Machines, R.K. Rajput, S. Chand & Company Ltd
- 3. Fluid Mechanics & Fluid Power Engineering D. S. Kumar, S.K. Kataria & Sons
- 4. Introduction to Fluid Mechanics, James E.A., John and Haberm W.A., Prentice Hall of India

Reference Books Recommended:

- 1. Introduction to Fluid Mechanics, James E.A., John and Haberm W.A., Prentice Hall of India
- 2. Fluid Mechanics, Cengel & Cimbla, Tata McGraw Hill
- 3. Fluid Mechanics, Jain A.K., Khanna Publication

Sem: III	[rd	Total Hours Distribution per week							
Total C	redit:3	Lecture(L):3 Hrs	Tutorial/Activity(T/A): 0Hr.						
Subject	Code :	BME3T10	Kinematics of Machines						
Examin	ation Schem	e							
Internal	Marks:	University Marks:	Minimum Passing Marks:	Examination Duration:					
30 Marks		70 Marks	45 Marks	3 Hours					
Course C	Objectives								
1	To make th	e student conversant with t	he process of motion tr	ansformation.					
2	To develop ability to critically analyze the machines, mechanisms and controlling devices								
3	To synthes	To synthesis the mechanism for different applications							

Course Ou	Course Outcomes					
After com	After completion of syllabus, students would be able to					
1	Understand the basics of machines and mechanism.					
2	Perform kinematic analysis (Displacement, Velocity, acceleration, Inertia forces) of a					
	given mechanism using analytical and graphical method.					
3	Synthesize new mechanisms for specific requirements.					
4	Construct cam profiles for various the follower motions.					
5	Understand the geometry of gears, its types, analysis of forces and motions of gear teeth and analyse the gear trains .					

SYLLABUS	
Contents	
Unit I – INTRODUCTION	
 Basic concept of machine, kinematic links, kinematics pairs, kinematics chain, mechanism, Difference between machine and mechanism, Inversions, simple & compound chain. Degrees of freedom, Estimation of degree of freedom of mechanism by Grubber's criterion and other methods. Harding's notations, Classification of four bar chain , Class-I & Class-II, Kutzbach's criteria. Various types of mechanism such as Geneva wheel, Pawl and ratchet mechanism, Exact straight line mechanism, Approx. straight line mechanism, Pantograph mechanism. 	08
Unit II- KINEMATIC ANALYSIS Kinematic analysis of simple mechanisms using vector algebra (Graphical method). Concept of Corioli's component of acceleration. Velocity analysis using Instantaneous center of Rotation method, Kennedy's theorem.	08
 Unit III- KINEMATIC SYNTHESIS Synthesis of mechanisms, Graphical Synthesis of mechanisms analytical technique. Restricted to design of crank rocker and slider crank mechanism only. 	08

 Unit IV- CAMS and FOLLOWERS: Types of cams and followers, types of follower motion, velocity and acceleration diagrams, Construction of cam profile. Introduction to cams with specified contours (No analytical treatment). 	08
 Unit V- GEARS and GEAR TRAINS Classification of gears, Types of gears, Spur gears - terminology, conjugate gear tooth action and law of gearing, involute and cycloidal profile, contact ratio, Interference and under cutting, methods of avoiding interference, minimum number of teeth. Helical gears: Nomenclatures, center distance, force analysis. Spiral Gears, Worm and worm Gears, Bevel Gears; their terminologies, center distance, force analysis and efficiency. Gear Trains. 	08

References:

Text Books Recommended:

- 1. Theory of Machine, S. S. Rattan, Tata McGraw Hill.
- 2. Mechanism and Machine Theory, J.S. Rao & Dukki Patti, New Age International (P) Ltd, Publishers
- 3. Theory of Machines, P L Ballaney, Khanna Publications.

Reference Books Recommended:

- 1. Theory of Machines and Mechanisms, J. E. Shigley and J. J. Uicker, Oxford University Press
- 2. Theory of Machines, Sadhu Singh, Pearson publications.
- 3. Advanced Mechanism Design–Analysis and Synthesis, A.G.Erdman and G.N.Sandor, Vol. I and II, Prentice Hall
- 4. "Mechanisms and Mechanical Devices Source Book", Neil Sclater, Nicholas P Chrironis, McGraw-Hill
- 5. Kinematics and Linkage Design, A. S. Hall, Jr., Prentice Hall
- 6. Mechanism Synthesis and Analysis, A. H. Soni, McGraw Hill

Sem: III	Total Hours Distribution per week			
Total Credit : 2	Lecture (L): 2 Hrs Tutorial/Activity (T/A): 0 Hr.			
Subject Code	BMEMD3T01 Introduction to IOT			
	Examination Scheme			
Internal Marks	Internal MarksUniversity MarksMinimum Passing MarksExamination Duration			
30	70	45	3 Hours	

Course Objectives		
1	To study fundamental concepts of IoT	
2	To understand roles of sensors in IoT	
3	3 To Learn different protocols used for IoT design	
4	To be familiar with data handling and analytics tools in IoT	

Course Outcomes		
After completion of syllabus, students would be able to		
1	Explain the basics of networking and emergence of Internet of Things.	
2	Classify various sensing devices and actuator types.	
3	Explain IoT Processing Topologies and its types.	
4	Demonstrate Cloud Computing concept and IOT case studies.	

SYLLABUS	
Contents	No of hours
Unit I	
Basics of Networking: Introduction, Network Types- connection types, physical topology, network reachability; Layered network models-OSI model, Internet protocol suite; Emergence of IoT: Introduction, Evolution of IoT, Enabling IoT and the Complex Interdependence of Technologies, IoT Networking Components.	7
Unit II IoT Sensing and Actuation: Introduction, Sensors, Sensor Characteristics, Sensorial Deviations, Sensing Types, Sensing Considerations, Actuators, Actuator Types, Actuator Characteristics.	

Unit III		
IoT Processing Topologies and Types: Data Format- Structured data, unstructured		
data; Importance of Processing in IoT; Processing Topologies- onsite processing, off-	7	
site processing; IoT Device Design and Selection Considerations, Processing		
Offloading- Offload location, offload decision making, Offloading considerations		
Unit IV		
Cloud Computing: Introduction, Virtualization- Advantages and types ; Cloud Models-		
Service model and deployment model; Service-Level Agreement in Cloud Computing,		
Cloud Implementation- Cloud simulation, OpenStack, Amazon web services;Sensor-		
Cloud:Sensors-as-a-Service.		
IOT Case Studies:		
Agricultural IoT – Introduction and Case Studies;		
Vehicular IoT – Introduction;		
Healthcare IoT – Introduction and Case Studies;		
IoT Analytics – Introduction, Machine Learning- Advantages , challenges and types.		

RASHTRASANT TUKADOJI MAHARAJ NAGPUR UNIVERSITY, NAGPUR FACULTY OF SCIENCE & TECHNOLOGY

B.TECH. MECHANICAL ENGINEERING

Sem: III	Total Hours Distribution per week		
Total Credit : 3	Lecture (L): 3 Hrs Tutorial/Activity (T/A): 0 Hr.		
Subject Code	BMEOE3T01A Introductions to Metrology		
	Examination Scheme		
Internal Marks:	University Marks:	Minimum Passing Marks:	Examination Duration:
30	70	45	3 Hours

Course Objectives	
1	This course is designed to learn and understand need of measurements
2	To impart the knowledge about the functioning of Metrology
3	It aims to perform the assessment of Production design and calculation.
4	It provides a basic knowledge of metrological measurement.
5	To the use of the metrology measurement comparator.

Course Outcomes		
After con	After completion of syllabus, students would be able to	
1	Students will be able to analyze the concept of metrology.	
2	Students will be able asses the functioning of instrument.	
3	Students will be able to understand the production design and analysis	
4	Students will be able to differentiate Linear and angular measurement	
5	Students will be able to identify the different type of comparators	

SYLLABUS		
Contents		
Unit I Standard of measurement, line end and wave length standards allowance & tolerance inter changeability selective assembly and applications	08	
Unit II Limits and fits, types of fits, shaft and hole basic system, Applications of hole and shaft basis system	08	
Unit III Design of limit gages(analytical treatment is expected),Introduction to process planning sheet.	08	

Unit IV	
Measurement of straightness and flatness, instruements for Linear and Angular Measurement	
(Vernier, Angle gage, Sine Bar, Level Indicator, Clinometer and Taper gage	
Unit V	
Comparators : Mechanical ,Optical ,Electrical ,Electronic, Pneumatic, Use of optical profile	08
projector and Tool Makers Microscope ,Autocollimator	

Sem: III	Total Hours Distribution per week			
Total Credit : 1	Lecture (L): 2 HrsTutorial/Activity (T/A): 0 Hr.			
Subject Code	BMEOE3P01A Introduction to Metrology Lab			
	Examination Scheme			
Internal Marks	Internal MarksUniversity MarksMinimum Passing MarksExamination Durat			
25	25	25		

Course Objectives	
1	Demonstrate the ability to select various precision measuring instruement
2	Identify the concept of linear and angular dimensions
3	It aims to perform assessment of production design
4	To understand the concept of measurement system and standard of measurement
5	To classify the comparators and design limit gages

List of Practical's

	List of Practical's Minimum Eight out of the following practical's shall be performed
01	Measurement of Linear Using Vernier, angular dimensions (, Sine Bar)
02	Measurement angular dimensions using Sine Bar
03	Measurement of Flatness and Straightness
04	Study of Measurement of parameters using Tool Maker Microscope
05	Study of measurement of parameters using Optical Profile Projector
06	Use of Optical flat
07	Design of Limit Gage
08	Industrial use of comparator

RASHTRASANT TUKADOJI MAHARAJ NAGPUR UNIVERSITY, NAGPUR FACULTY OF SCIENCE & TECHNOLOGY

B.TECH. MECHANICAL ENGINEERING

Sem: III	Total Hours Distribution per week			
Total Credit : 3	Lecture (L): 3 Hrs		Tutorial/Activit	y (T/A): 0 Hr.
Subject Code	BMEOE3T01B		Automo	bile Engineering
	Examination Scheme			
Internal Marks:	University Mark	Minimum Passing Marks		Examination Duration:
30	70		45	3 Hours

Course Ob	Course Objectives		
1	To make the students conversant with fundamentals of automobile systems		
2	To develop competencies in the performance analysis of vehicle.		
3	To understand the working of transmission system, suspension system, brakes, steering system, wheels and tyres used in automobiles		
4 To make the students conversant with Alternative fuels and pollution control devices in Automobiles.			

Course Outcomes			
After co	After completion of syllabus, students would be able to		
1	Demonstrate the vehicle construction, chassis, lubrication system and cooling system in automobile.		
2	Describe the principle and working of Transmission system and clutch, gear box, rear axle drives, fluid flywheel, torque converter.		
3	Identify the steering, suspension system and types of brakes.		
4 Describe construction of different automotive chassis components.			
5	Ability to select proper alternative energy source according to application considering economy, Environmental effect, Physical effect on human etc		

SYLLABUS	
Contents	No of hours
 Unit I: Introduction: Classification of automobiles, Major components and their functions. Chassis, different vehicle layouts. Power Plant: Constructional features of different types of engines used in automobiles. Fuel supply systems, cooling systems, lubrication systems. 	08

 Unit II Transmission system: Clutch: Necessity, requirements of a clutch system. Types of Clutches, centrifugal clutch, single and multi-plate clutch. Gear Box: Necessity of transmission, principle, types of transmission, sliding mesh, constant mesh, synchromesh, transfer gear box, gear selector mechanism, lubrication and control. Torque converter, semiautomatic and automatic transmission. 	09
 Unit III Steering systems: Principle of steering, steering geometry and wheel alignment, Power Steering. Under steer, Over-steer. Suspension systems: Need, Function of spring and shock absorber, conventional suspension, Independent, suspension System, Active suspensions. Brakes: Function, Classification, Basic Components. Drum Brakes, Disc Brakes, Hydraullic brakes, Air Brakes, ABS. 	09
Unit IV Drive to Wheels: Propeller shaft and universal joints, , differential, rear axle, , steering geometry, camber, king pin inclination, included angle, castor, toe in & toe out, steering gears, power steering, general arrangements of links and stub axle, types of chassis frames	08
 Unit V Alternative Fuels: CNG, LPG, biodiesel, bio-ethanol, gasohol and hydrogen fuels in automobiles. Automotive Emission Control Systems: Sources of emission from engines, Automotive emission controls, Controlling crankcase emissions, Controlling evaporative emissions, Exhaust gas recirculation, Catalytic converter, Emission standards- Euro I, II, III and IV norms, Bharat Stage II, III norms . 	09

Sem: III	Total Hours Distribution per week			
Total Credit : 1	Lecture (L): 2 Hrs Tutorial/Activity (T/A): 0 Hr.			
Subject Code	BMEOE3P01B	OE3P01B Automobile Engineering Lab		
	Examination Scheme			
Internal Marks:	University Marks:	Minimum Passing Marks:	Examination Duration:	
25	25	25		

Course Outcomes			
After cor	After completion of syllabus, students would be able to		
1	Make students understand the basic concepts, requirement and working of various components of automobile.		
2	Make students understand the assembling and disassembling procedure of Engine .clutch ,brakes and the process of wheel alignment, balancing and battey testing.		
3	Enable students to understand and identify components of transmission system, brakes, steering and suspension systems.		
4 Aware students about automotive electronics and recent technologiesused in automobiles			
5	Aware students about the importance of safety considerations in automobiles, automobile maintenance and overhauling.		

List of Practical's

Minimum 8 out of the following Practical's shall be performed

Sr. No.	List of Practical's
	Minimum Eight out of the following practical's shall be performed
01	To prepare a report on visit to automobile engineering industry/ service center / any industry related to automobile components or systems.
02	Demonstration and study of Chassis layout and frame used in any one automobile.
03	To assemble and disassemble of single or multi cylinder engine and identify its components
04	To assemble and disassemble multi plate clutch
05	To assemble and disassemble mechanical brakes and identify its components.
06	To identify battery condition using battery tester and its restoration.
07	To prepare a report on process of wheel alignment and balancing
08	Demonstration and study of air suspension system. Identify its components and study about the functions of each components.
09	Demonstration and study of different types of steering systems
10	Study of heating, ventilation and air conditioning system in a given car
11	To prepare a report on pre-delivery inspection (PDI),free service schedule of a Carwith checklist of work to be carried in PDI. 1 st ,2 nd and 3 rd free service.

Sem: III	Total Hours Distribution per week			
Total Credit : 2	Lecture (L): 2 HrsTutorial/Activity (T/A): 0 Hr.			
Subject Code	BMEH3T01	Introduction to Innovation and Entrepreneurship		
	Examination Scheme			
Internal Marks	University Marks	Minimum Passing Marks	Examination Duration	
30	70	45	3 Hours	

Course Objectives		
1	To develop an understanding of innovation as a structured and strategic business process by exploring its sources, drivers, and impact on business growth and competitive advantage.	
2	To explore strategies for building an innovative organization, leveraging open innovation,	
	collaboration, and networking to develop new products, services, and ventures.	
3	To equip students with the skills to recognize entrepreneurial opportunities, develop effective entry strategies, and sustain competitive advantage through innovation and intellectual property protection.	
4	To develop an understanding of financial planning in entrepreneurship, including financial projections, valuation, and various stages and sources of business financing.	

Course Outcomes

After co	After completion of syllabus, students would be able to		
1	Analyze and differentiate knowledge push and need pull innovations, evaluating whether		
	innovation is a structured process or an unpredictable, uncertain activity.		
2	Evaluate the effectiveness of collaborative innovation networks versus independent		
	approaches in fostering innovation and entrepreneurial success.		
3 Analyze opportunity recognition methods, evaluate entry strategies, and apply			
	property rights (IPR) to safeguard innovations in a competitive market.		
4	Analyze financial projections, assess business valuation, and evaluate different financin		
	options, including debt, venture capital, and alternative funding sources.		

SYLLABUS	
Contents	No of
	hours
Unit I	7
Innovation: What and Why?	
Innovation as a core business process, Sources of innovation, Knowledge push vs. need pull	
innovations.	
Class Discussion- Is innovation manageable or just a random gambling activity?	

Unit II Building an Innovative Organization Creating new products and services, Exploiting open innovation and collaboration, Use of innovation for starting a new venture Class Discussion- Innovation: Co-operating across networks vs. 'go-it-alone' approach.	7
Unit III Entrepreneurship: Opportunity recognition and entry strategies, Entrepreneurship as a Style of Management, Maintaining Competitive Advantage- Use of IPR to protect Innovation.	7
Unit IV Entrepreneurship- Financial Planning: Financial Projections and Valuation, Stages of financing, Debt, Venture Capital and other forms of Financing.	7

Sem: III	Total Hours Distribution per week			
Total Credit : 2	Lecture (L): 2HrsTutorial/Activity (T/A): 0 Hr.		ivity (T/A): 0 Hr.	
Subject Code	BMEVE3T01 Constitution of India			
	Examination Scheme			
Internal Marks	University Marks	Minimum Passing Marks	Examination Duration:	
30	70	45	3 Hours	

Course Objectives		
1	Analyze the basic structure of Indian Constitution.	
2	Remember the Fundamental rights and duties.	
3	Know DPSP's and Nation's political structure.	
4	Understand function of Parliament and Judiciary.	

SYLLABUS		
Contents	No of hours	
Unit I Introduction to the Indian Constitution, Preamble of the Indian Constitution and key concepts, Salient features of the Indian Constitution, Role and objective of Constituent Assembly	07	
Unit II Fundamental rights meaning, significance, restrictions and limitations Fundamental duties and its scope, difference between Fundamental rights and Fundamental duties	07	
Unit III Directive Principles of State Policy (DPSP's) and its present relevance in India, Union Executive- President, Prime Minister and Union cabinet	07	
Unit IV Parliament - role and function, Lok Sabha and Rajya Sabha, Judiciary system in India, Supreme Court of India and other courts.	07	

RASHTRASANT TUKADOJI MAHARAJ NAGPUR UNIVERSITY, NAGPUR FACULTY OF SCIENCE & TECHNOLOGY

B.TECH. MECHANICAL ENGINEERING

Sem: III	Total Hours Distribution per week			
Total Credit : 2	Lecture (L): 4 Hrs Tutorial/Activity (T/A): 0 Hr.			
Subject Code	BMECE3P01 Community Engagement Project/Mini Project			
	Examination Scheme			
Internal Marks:	University Marks:	Minimum Passing Marks:	Examination Duration:	
50	50	50		

Course O	Dbjectives
1	Provide students with real-world experience, fostering a sense of social responsibility and preparing them to address societal challenges with empathy and innovation

Course O	Course Outcomes		
After cor	After completion of syllabus, students would be able to		
1	gain hands-on experience by applying their technical skills to address real-world problems within their communities.		
2	develop essential skills beyond technical expertise, including communication, teamwork, problem-solving and life-long learning skills.		
3	exhibit a sense of social responsibility and ethical awareness and prepare themselves to become socially conscious engineers.		
4	work with diverse groups of people and address community-specific needs to develop a broader perspective and understanding of different contexts.		
5	contribute to their communities by developing solutions to local problems, improving quality of life, and addressing social needs.		

Instructions:

- The project is to be carried out in a group of 4-6 students.
- The project work will be guided and supervised by a faculty member and workload for the same shall be 2 hr / week.
- Students can collaborate with community members to identify needs and develop solutions.
- Students can offer technical expertise to local businesses, organizations, or community groups.

The assessment will be based on:

- 1. Demonstration of model (crafted / fabricated)/ survey report/ research report.
- 2. Presentation based on project work carried out.
- 3. Viva-voce.

Sem: IV	Total Hours Distribution per week			
Total Credit : 3	Lecture (L): 3 Hrs Tutorial/Activity (T/A): 0 Hr.			
Subject Code	BME4T11	BME4T11 Engineering Thermodynamics		
	Examination Scheme			
Internal Marks	University Marks	Minimum Passing Marks	Examination Duration	
30	70	45	3 Hours	

Course O	Course Objectives			
1	This course deals with the fundamentals of Thermodynamics, including thermodynamic systems and properties, relationships among the thermos-physical properties, the laws of thermodynamics and applications of these fundamental laws in thermodynamic systems			
2	To present a comprehensive and rigorous treatment of classical thermodynamics while retaining an engineering perspective.			
3	Explain the working principle of various power cycles used in thermal systems.			

Course C	Course Outcomes After completion of syllabus, students would be able to		
After co			
1	Explain the concepts of thermodynamics, relate laws of gases, identify various types o thermodynamic processes and apply the laws to determine the energy transfer i terms of heat and work.		
2	Explain first law of thermodynamics and apply the law to evaluate open, closed systems, thermal components and devices.		
3	Interpret second law of thermodynamics, entropy and apply the law to evaluate the performance of heat engine, heat pump, and refrigerator.		
4	Relate various steam properties, and analyze the various types of processes using steam as working fluid to determine the energy transfer in terms of heat and work.		
5	Explain various types of gas power cycles and evaluate the efficiencies of cycles used in steam power plant.		

SYLLABUS	
Contents	No of hours
Unit I: Basic concepts of Thermodynamics, Systems and their types, Property, State, Process. Path and point functions. Thermodynamic Equilibrium. Zeroth law of thermodynamics and its significance for temperature measurement Introduction to First law of thermodynamics, Energy transfer, Heat and work transfer. Ideal Gas laws: Boyle's law, Charle's law, Gay-Lussac's law. Equation of state, General gas equation, Specific Heat, Universal gas constant. Various Thermodynamic Processes: Constant pressure, Constant volume, Isothermal, Isentropic and polytropic process, Calculation of Heat transfer, Work done, Change in Internal Energy and Enthalpy for these processes.	09

Unit II: The first law of Thermodynamics for Closed System undergoing a process and cycle (Control Mass System) and Open System (Control Volume System) . Steady Flow process applies to Compressor, Turbine, Boiler, Steam Nozzle, Throttling Device, Heat Exchanger. (Analytical treatment on First law applied to thermodynamic processes and cycles and Steady low energy equation applied to various flow devices is expected).	09
Unit III: Second Law of Thermodynamics:- Heat Reservoir, source and sink. Heat	
Engine, Refrigerator, Heat Pump, Kelvin-Plank and Clausius Statements, Perpetual	
Motion Machine I and II, Carnot Cycle. Entropy:- Clausius Inequality, Entropy,	08
Principle of Increase of Entropy, Change in Entropy for different thermodynamics	
processes. ,	
Unit IV: Properties of Steam:- Formation of steam and its thermodynamic properties	
like Sensible Heat, Latent Heat, Critical State, Triple Point, Wet Steam, Dry Steam,	
Superheated Steam, Dryness Fraction, Enthalpy, Internal Energy of Steam, External	09
Work Done during Evaporation, T-S Diagram, Mollier Chart, Work and Heat Transfer	09
during various Thermodynamic Processes with steam as working fluid (Analytical	
Treatment using steam table and Mollier chart is expected),	
Unit V: Power Cycles: - Otto Cycle, Diesel Cycle, Brayton Cycle, Representation on P-	
v and T-s diagrams. The equation for work done, heat transfer, air standard efficiency,	
and mean effective pressure. Comparison of Otto, Diesel and Dual cycles. Introduction	08
to simple vapour power cycle, i.e., Rankine cycle (Analytical treatment in terms of	00
calculation Work done & efficiency analysis is expected on Otto Cycle, Diesel Cycle)	
,	

Sem: IV	Total Hours Distribution per week				
Total Credit : 3	Lecture (L): 3 HrsTutorial/Activity (T/A): 0 Hr.				
Subject Code	BME4T12 Manufacturing and Machining Processes				
	Examination Scheme				
Internal Marks	Internal MarksUniversity MarksMinimum Passing MarksExamination Duration				
30	70	45	3 Hours		

Course Objectives				
1	To understand pattern making, gating system, moulding process and the casting process.			
2	To study metal forming techniques, rolling, drawing.			
3	To learn about plastics along with properties, types, applications and shaping m			
4	To expose the students to the principles of the metal & plastic joining methods.			
5	To understand basic mechanism of metal removal processes and working mechanisms of various machine tools and machining principles.			
6	Understand the importance of machining processes and be able to apply the suitable manufacturing and machining processes for an engineering product.			
7	To know and apply surface finishing and allied processes.			

Course Outcomes					
After co	After completion of syllabus, students would be able to				
1	1 Understand the importance and application of various manufacturing processes viz. casting, rollinforging, extrusion, drawing and plastics shaping methods.				
2	Understand the basic concept of joining process and the application of various metal and plastic joining processes.				
3	Get acquainted with the fundamentals of metal cutting and cutting tools.				
4	Understand basic construction and operations of lathe, shaper, planer and milling machines, milling cutters.				
5	Understand the basics of drilling, reaming, grinding and super finishing processes and their applications.				

SYLLABUS	
Contents	No. of hours
 Unit I Casting Process: Introduction, Pattern: Types, materials used, Pattern making allowances. Core types. Moulding: Types of sand moulds, moulding sand composition and properties. Gating design: Elements of gating systems, types of gates. Melting furnaces -Types, Electric furnace, Induction furnace, Cupola- construction & operation. Casting defects. Forming Process for metals: Introduction to Rolling, types of rolling machine, Forging, Extrusion and Drawing. Introduction to Plastics: Properties & types, applications, Forming & Shaping of plastics - Extrusion, Injection moulding, Blow moulding, Compression moulding, Transfer moulding, Embossing, Calendaring. 	9
 Unit II Joining Processes: Introduction to metal Joining - Types of Welding. Arc Welding & Gas Welding Processes, Defects & Inspection of Welding Joints, Electrodes, Resistance Welding, TIG Welding, MIG Welding, Spot Welding. Introduction to Joining of Plastics - Mechanical Fastening, Spin Welding, Solvent Bonding, Ultrasonic welding, Induction welding, Dielectric welding, Hot Plate welding, Vibration welding, Hot gas welding. 	9
Unit III Introduction to Machining Parameters: Introduction to machining, Tool materials, tool materials properties, nomenclature and tool geometry of single point cutting tool. Theory of Metal Cutting: Introduction, Orthogonal and Oblique cutting, Mechanics of Metal Cutting, Chip formation, cutting fluids, Machining Parameters: cutting speed, feed and depth of cut, tool life.	9
 Unit IV Lathe: Introduction, types, construction of simple lathe, mechanism and attachments for various operations, machine specifications, basis for selection of cutting speed, feed and depth of cut, turning operations such as facing, step turning, taper turning, threading, knurling. Introduction to Capstan & Turret Lathe. Shaper & Planer: Introduction, description of machines. Mechanisms of shaper: Quick return mechanism, Crank & slotted link mechanism. Milling: Introduction, Column & knee type milling machines, Types of milling operations, Types of milling cutters, Tool geometry & their specifications. Indexing – simple and compound. 	9
 Unit V Drilling: Introduction, classification of drills, nomenclature of twist drills, sensitive drilling machine and radial drilling machine. Introduction to Reaming Process. Grinding: Grinding wheel, specifications & selection, cylindrical & centreless grinding operations. Super Finishing processes: Honing, Lapping, super finishing, polishing, buffing, Metal spraying, Galvanizing and Electroplating. 	9

Sem: IV	Total Hours Distribution per week				
Total Credit : 1	Lecture (L): 2 Hrs Tutorial/Activity (T/A): 0 Hr.				
Subject Code	BME4P12 Manufacturing and Machining Processes Lab				
	Examination Scheme				
Internal Marks:	Internal Marks:University Marks:Minimum Passing Marks:Examination Duration				
25	25	25			

Course Outcomes				
After completion of syllabus, students would be able to				
1	Understand casting, forming processes and plastic production methods.			
2	Understand the various metal and plastic joining processes.			
3	Understand basic cutting mechanics and cutting tools.			
4	4 Know the working of lathe and perform turning and other lathe, shaping, planing milling operations.			
5	Perform drilling operation and suggest super finishing processes applicable to a particular product.			

List of Practical's

Minimum Eight out of the following practical's shall be performed:

Sr. No.	List of Practical's		
01	Study of Casting Process, Pattern making		
02	Study of Forming Processes		
03	Study of Metal and Plastic Joining Processes		
04	Study of Single Point Cutting Tool		
05	Study of multiple point cutting tools (Milling, Drills, Broaches).		
06	Study of Lathe Machine.		
07	Study of Shaper Machine and mechanisms.		
08	Study of milling machine.		
09	Study of Super Finishing processes		
10	One Job – Casting		
11	One Job – on Arc Welding/TIG/ MIG/ Resistance welding		
12	One Job on Lathe machine with turning, facing, Thread Cutting, Taper Turning operations.		
13	One Job on Milling machine.		

Sem: IV	Total Hours Distribution per week					
Total Credit : 2	Lecture (L): 4 Hrs Tutorial/Activity (T/A): 0 Hr.					
Subject Code	BME4P13 Machine Drawing and Solid Modelling					
	Examination Scheme					
Internal Marks:	Internal Marks:University Marks:Minimum Passing Marks:Examination Duration					
50	50	50				

Course Objectives

course	
1	Create 2-D orthographic manual drawings as well as digital drawing using CAD software package of standard machine components
2	Apply standard practices for creation of 2-D orthographic manual drawings as well as digital drawing using CAD software package of assembly with dimension detailing, part list and ballooning. Also perform 2-D detailing of assembly components.
3	Create 3-D solid model and 2-D detailing of simple parts using CAD software package and perform 2-D detaining.
4	Create production drawing and process sheet for standard machine components.
5	Get hands on experience of reverse engineering process and concepts.

List of Practical's

Minimum Six out of the following practical's shall be performed:

Sr. No.	List of Practical's			
01	2-D Orthographic pencil drawings of standard components with dimensions and detailing : Minimum One sheet			
02	2-D Orthographic pencil drawings showing sectional views of part with dimensions and detailing: Minimum One sheet			
03	2-D Orthographic pencil drawings of Assembly showing at least two views with assembly dimensioning, part list and ballooning: Minimum One sheet			
04	2-D Orthographic pencil drawings of Assembly detailing (disassembly) showing dimensional details of assembly components : Minimum One sheet			
05	Creating 3-D solid model of simple part with basic features like extrude, revolve, holes, round, chamfer from Given 2-D detailing using any CAD software package. Perform 2-D drafting and detailing of solid model: Print out showing 2-D detailing and pictorial view (isometric view) of part to be submitted.			
06	Creating 2-D Orthographic drawings of Assembly with one sectional view with assembly dimensioning, part list and ballooning using any CAD software package: Print out to be submitted.			
07	Production drawing and process sheet: Prepare production drawing and process sheet of any standard machine component using CAD software package: Submit print out.			
08	Compulsory Reverse engineering group activity (maximum 4 members in a group): Each group to be given unique assembly comprising of minimum four components (preferably standard assembly e.g. bearing housing, tool post, clutch housing, automobile parts, parts in workshop facilities etc.).Students to disassemble all parts, study each part, identify standard components, perform complete reverse engineering process: create rough sketch of each part, measure its various dimensions using basic measuring instruments (ruler scale, vernier etc.), prepare final drawing using any CAD software package, apply GD & T: Print out showing complete detailing of each assembly component to be submitted.			

Sem: IV	Total Hours Distribution per week				
Total Credit : 2	Lecture (L): 2 Hrs Tutorial/Activity (T/A): 0 Hr.				
Subject Code	BMEMD4T02 Introduction to Artificial Intelligence				
	Examination Scheme				
Internal Marks	Internal MarksUniversity MarksMinimum Passing MarksExamination Duration				
30	70	45	3 Hours		

Course Objectives		
1	Understand the basics of artificial intelligence and its subfields.	
2	Explore real-world applications of AI across different industries.	
3	Gain insights into the ethical, social, and economic implications of AI	
4	Develop an appreciation for the potential of AI to drive innovation and transformation	

Course Outcomes		
After completion of syllabus, students would be able to		
1	Define and explain the fundamental concepts and subfields of AI.	
2	Identify real-world applications of AI across various industries	
3	Analyze the ethical, social, and economic implications of AI	
4	Recognize the potential of AI to drive innovation and transformation in different domains.	

SYLLABUS	
Contents	No of hours
Unit I : Definition and scope of AI, Historical overview and key milestones, Differentiating AI from human intelligence, AI Subfields and Technologies: Machine learning: Supervised, unsupervised, and reinforcement learning, Deep learning and neural networks, Natural language processing (NLP) and computer vision	7
Unit II: Ethical and Social Implications of AI Bias and fairness in AI systems, Privacy and data protection concerns, Impact of AI on employment and the workforce, AI and social inequality, Ethical guidelines and responsible AI practices, AI and Innovation, Emerging trends and future directions in AI, AI and creativity: Generative models and artistic applications	
Unit III: Applications of AI AI in healthcare: Diagnosis, treatment, and medical imaging, AI in finance: Fraud detection, algorithmic trading, and risk assessment, AI in transportation: Autonomous vehicles and traffic optimization, AI in customer service and chatbots, AI in education: Personalized learning and intelligent tutoring system	7
Unit IV: Building AI Projects Workflow of a machine learning project, Workflow of a data science project, how to use data, how to choose an AI project, working with an AI team, how to process and visualize data, technical tools for AI teams, use of python in AI related projects.	7

Sem: IV	Total Hours Distribution per week				
Total Credit :2	Lecture (L): 2 Hrs	Tutorial/Act	tivity (T/A): 0 Hr.		
Subject Code	BMEOE4T02A	Operation Research Techniques			
	Examination Scheme				
Internal Marks	University Marks	Minimum Passing Marks	Examination Duration		
30	70	45	3 Hours		

Course Objectives		
1	To study the various OR tools	
2	Study to apply appropriate model to the given situation	
3	Formulate the problem	
4	Solve and analyze the problem	

Course Outcomes			
After completion of syllabus, students would be able to			
1	formulate linear programming problems and solve it using simplex and graphical methods.		
2	suggest a solution of transportation and assignment model problem		
3	draw the network diagram, obtain critical path and arrive at an optimum solution using crashing.		
4	to provide optimum sequence for job processing and calculate economic order quantity for inventory management		

SYLLABUS		
Contents	No of hours	
Unit I Basics of Operations Research: Introduction to OR & Basic OR Models, Definition Characteristics and limitations of OR. Linear programming: Introduction, Linear programming formulation, solutions of LPP by graphical methods and simplex method. Formulation of Dual of LPP.	7	
Unit II Transportation Model: Formulation of transportation model, Basic feasible solution using different methods (North-West corner, Least Cost, Vogel's Approximation Method) Optimality Methods, Unbalanced transportation problem, Variants in Transportation Problems. Assignment Model: Formulation of the Assignment problem, unbalanced assignment problem, typical assignment problems.	7	
Unit III Network Analysis in Project Planning: Drawing of Network, CPM & PERT, probability of completion of project, Cost Analysis of Project, and Concept of Crashing.	7	

Unit IV	
Queuing models - Poisson arrivals and Exponential service times - Single channel models	
(MM1) (No derivation expected)	
Sequencing Model – Introduction, Sequencing Model: n job two machines problem, n job 3	7
machines problem.	
Inventory Control Models- Introduction and inventory management concepts, Economic	
Order Quantity model (EOQ), Economic Production Quantity model (EPQ).	

Sem: IV	Total Hours Distribution per week				
Total Credit : 2	Lecture (L): 2 Hrs Tutorial/Activity (T/A): 0 Hr.				
Subject Code	BMEOE4T02B	Waste Management			
	Examination Scheme				
Internal Marks:	University Marks:	Minimum Passing Marks:	Examination Duration:		
30	70	45	3 Hours		

Course Objectives		
1	To protect health, well being and environment through effective waste management techniques.	
2	To minimize the production of waste and to prevent pollution .	
3	to reduce and reuse of waste	
4	safe disposal of waste	

Course Outcomes				
After co	After completion of syllabus, students would be able to			
1	Understand different aspects of solid waste, its sources and effects on man and material etc.			
2	Understand problems arriving in handling large amount of solid waste generated ,its collection and transportation, processing and will able able to design safe collection and disposal methods			
3	Design methods and equipments for solid waste management to reduce its impact on environment.			
4	Evaluate and Analyze hazardous waste.			

SYLLABUS		
Contents	No of hours	
Unit I Solid Waste: Definition of solid wastes; Types of solid wastes – Sources based and Type based; Characteristics of Solid waste- Physical and chemical; Effect of solid waste on Health and on Environment; Concepts of waste reduction, recycling and reuse; Functional Elements of SWM system.	7	
Unit II Handling, Collection, Segregation and Transport Of Municipal Solid Wastes: Handling and segregation of wastes at source. Collection and storage of municipal solid wastes; analysis of Collection systems. Transfer stations.	7	

Unit III	
Municipal Solid Waste Management :	
Solid waste processing technologies. Mechanical and thermal volume reduction-	7
Compaction, shredding, incineration; Biological and chemical techniques for energy and	
other resource recovery: composting, vermicomposting, termigradation, fermentation.	
Unit IV	
Hazardous waste: Definition, Characteristics, Classification, Bioaccumulation, Labeling and	
handling of hazardous wastes. Hazardous waste treatment technologies - Physical, chemical	7
and thermal treatment of hazardous waste.	,
Radioactive waste: Definition, Sources, Low level and high level radioactive wastes and their	
management.	

Sem: IV	Total Hours Distribution per week		
Total Credit : 2	Lecture (L): 2 Hrs Tutorial/Activity (T/A): 0 Hr.		
Subject Code	BMEOE4T02C Financial and Cost Management		
	Examination Scheme		
Internal Marks	University Marks	Minimum Passing Marks	Examination Duration
30	70	45	3 Hours

Course Ol	Course Objectives		
1	To understands the concept of finance and cost management, various sources of generating the finance and to understand the books of account and also about recent trends in management		
2	To do break even analysis, decide equipment replacement policy, and to take make or buy		
	decision		
3	Ability to appreciate the importance of cost and management accounting, understand the applicability of cash flow statement in business		

Course (Course Outcomes After completion of syllabus, students would be able to		
After co			
1	Apply the knowledge of basics of financial management concepts and time value of money		
2	Select, classify, analyze and the plan the sources of Finance, types of capital, various elements of cost, cost control and evaluate equipment replacement policy, make buy decisions		
3	Develop and interpret books of accounts, trail balance, balance sheet, Capital P&L account, cash flow statement in business		
4	Evaluate and examine various costs of Capital, opportunity cost of capital, cost of different sources of Finance		
5	Evaluate, Select, and determine various techniques of capital budgeting, profitability index		

SYLLABUS	
Contents	No of hours
Unit 1: Introduction to Financial Management- Concept of Business Finance, Goals and Objectives of Financial Management, Time Value of Money	07
Unit 2: Financial Management- Various Sources of Finance, Financing Organizations, Types of Capital, Break even Analysis, Equipment Replacement Policy, Make or Buy Analysis.	07
Unit 3: Recording of Transactions - Accounting Process, Journals, Cash Book, Ledger, Balance Sheet, Profit and Loss Statement	07

Unit 4: Cost of Capital- Concept and Meaning of Cost of Capital, Cost of Different Sources of Finance, Factors affecting Cost of Capital ,	07
Unit 5: Investment Decision- Capital Budgeting, Significance of Capital Budgeting, Pay Back Method, Accounting Rate of Return, Internal Rate of Return, Net Present Value and Profitability Index.	07

Sem: IV	Total Hours Distribution per week		
Total Credit : 2	Lecture (L): 2 Hrs Tutorial/Activity (T/A): 0 Hr.		
Subject Code	BMEAE4T02 Aptitude & Reasoning		& Reasoning
	Examination Scheme		
Internal Marks	University Marks	Minimum Passing Marks	Examination Duration
30	70	45	3 Hours

Course Objectives	
1	To prepare student for campus placement activity
2	To enhance employability skills to increase chance of employment.
3	To increase confidence in competitive exams like GATE, CAT etc

Course Outcomes		
After completion of syllabus, students would be able to		
1	Understand the power of words and its importance in organization	
2	Get acquainted with data interpretations used in industry	
3	Develop logical thinking process.	
4	Develop visual imagination skill to solve the problems	

SYLLABUS	
Contents	
Unit I - Verbal Aptitude Basic English grammar: tenses, articles, adjectives, prepositions, conjunctions, verb- noun agreement, and other parts of speech Basic vocabulary: words, idioms, and phrases in context Reading and comprehension Narrative sequencing	07
Unit II- Quantitative Aptitude Data interpretation: data graphs (bar graphs, pie charts, and other graphs representing data), 2- and 3-dimensional plots, maps, and tables Numerical computation and estimation: ratios, percentages, powers, exponents and logarithms, permutations and combinations, and series Mensuration and geometry Elementary statistics and probability ,	07
Unit III- Analytical Aptitude Logic: deduction and induction, Analogy, Numerical relations and reasoning	07
Unit IV- Spatial Aptitude Transformation of shapes: translation, rotation, scaling, mirroring, assembling, and grouping Paper folding, cutting, and patterns in 2 and 3 dimensions	07

Books:

- 1. A Modern Approach to Verbal & Non-Verbal Reasoning by R.S. Agrawal
- 2. Verbal Ability & Reading Comprehension for CAT by Arun Sharma
- 3. Competitive English for professional course by J. K. Gangal
- 4. General English for Competitions by A. N. Kapoor

Sem: IV	Total Hours Distribution per week		
Total Credit : 2	Lecture (L): 2 HrsTutorial/Activity (T/A): 0 Hr.		
Subject Code	BMEHM4T02 Industrial Engineering and Management		
	Examination Scheme		
Internal Marks	University Marks	Minimum Passing Marks	Examination Duration
30	70	45	3 Hours

Course Objectives		
1	Understand concept and significance of Industrial Engineering & Management	
2	Understand Plant location & Plant layout	
3	Understand applications of Time & Motion study	
4	Understand concept and application of Value Engineering.	

Course Outcomes		
After completion of syllabus, students would be able to		
1	Apply the concepts of Industrial Management in industries.	
2	Understand and illustrate the plant location & layouts concepts of the manufacturing plant	
3	Explain and evaluate the Time and motion study concepts in the design the workplace layout design.	
4	Apply the concepts of Value engineering and Value analysis.	

SYLLABUS	
Contents	No of hours
Unit I INTRODUCTION: Concept, nature and significance of Industrial Management, Economic, Social, Political forces affecting business operations & growth. Social responsibility of business.	7
Unit II PRODUCTION MANAGEMENT: Plant location, Weber's Theory of location of industries, Layout and assembly line balancing- process and product layout, Government policies on industrial location, Production control charts, Route & process charts, Operation charts, Machine load charts, Process charts.	7

Unit III	
TIME AND MOTION STUDY: Time and motion study, Job design, job standards, work measurement time study, work sampling, job evaluation, merit rating, method studies, predetermined motion time standards (PMTS).	7
Unit IV	
VALUE ENGINEERING : Introduction, applications and types of values, concepts of value engineering, phases of value engineering studies, value analysis.	7

Sem: IV	Total Hours Distribution per week		
Total Credit : 2	Lecture (L): 2 Hrs	Tutorial/Act	tivity (T/A): 0 Hr.
Subject Code	BMEVE4T02	Environme	ental Science
	Examination Scheme		
Internal Marks:	University Marks:	Minimum Passing Marks:	Examination Duration:
30	70	45	3 Hours

Course (Course Objectives		
1	to develop awareness about environmental issues, sustainability, and the role of engineers in solving them.		
2	to impart fundamental knowledge of environmental chemistry relevant to mechanical engineering.		
3	to link mechanical processes (thermal, fluid, manufacturing) with environmental impact and sustainable design.		
4	To promoting multidisciplinary learning, ethics, and sustainable development.		

Course Outcomes		
After completion of syllabus, students would be able to		
1	explain ecosystem structure, biodiversity, and sustainability in the context of engineering.	
2	understand environmental chemistry and pollution related to mechanical processes.	
3	apply sustainable and green practices in mechanical engineering.	
4	comprehend energy and resource conservation through renewable technologies and regulations.	

SYLLABUS	
Contents	No of hours
Unit I: Multidisciplinary Nature of Environmental Studies Definition, scope, and importance, Need for environmental awareness in engineering. Ecosystem, Energy flow: .Major ecosystems: forest, desert, aquatic (pond, river, ocean). Biodiversity and Conservation , Importance and threats to biodiversity, Role of mechanical engineers in ecosystem preservation and responsible design ,	7

Unit II : Environmental Chemistry: Water Chemistry: COD, DO, alkalinity, hardness, pH Air Chemistry: Composition, greenhouse gases, photochemical smog, acid rain Soil Chemistry: Salinity, acidity, contamination, nutrient cycles (C, N, P, S)Pollution and Its Effects Air Pollution: Sources (vehicular, industrial, thermal systems), effects, control methods Water Pollution: Types, causes, impacts, treatment techniques (aeration, filtration, ETPs)	7
 Unit III: Engineering and Environmental Interface Mechanical Systems and Environmental Impact - Combustion systems: emissions, thermal pollution. Manufacturing processes: Waste generation, noise, and emissions. Green Manufacturing & Eco-Design- Cleaner production, lean and sustainable manufacturing. Recycling, remanufacturing, eco-friendly material selection 	7
Unit IV : Sustainable Development, Renewable Energy Sustainable Development Goals (SDGs) and Engineering - Global goals and relevance to engineering practices, Industrial ecology and sustainable product development. Renewable and Clean Energy Technologies (Solar PV and thermal, wind, hydro, biomass).	7

Sem: IV	Total Hours Distribution per week		
Total Credit : 2	Total Credit : 2Lecture (L): 4 HrsTutorial/Activity (T/A): 0 H		ivity (T/A): 0 Hr.
Subject Code	BMEVS4P02	Introduction	n to MS-Office
	Examination Scheme		
Internal Marks:	University Marks:	Minimum Passing Marks:	Examination Duration:
50		25	

Course Objectives		
1	Create and manage professional documents using word.	
2	Analyze, manage and present data using excel.	
3	Create and manage presentation using power point.	
4	Insert a table, picture, or drawing into the document.	
5	Prepare the document to be sent as a circular letter.	

List of Practical's

Minimum Eight out of the following practical's shall be performed:

Sr. No.	List of Practical's
01	To create a new document, open, save and print a document, edit and format text using MS-Word.
02	To change the page layout, background and borders, insert headers and footers using MS-Word.
03	To insert and edit tables, insert clip art and pictures to documents using MS-Word.
04	To Create a project abstract containing Formatting Styles, Inserting table, Bullets and Numbering, Changing Text Direction, Cell alignment, Footnote, Hyperlink, Symbols, Spell Check, Track Changes in MS-Word.
05	To Work with excel workbook and sheets, Formatting excel work book like New, Open, Close, Save, Save As.
06	To format text in MS-Excel such as Font Size, Font Style, Font Color, Use the Bold, Italic, and Underline, Wrap text, Merge and Centre text.
07	Modifying Columns, Rows & Cells, Perform Calculations with Functions, Creating Simple Formulas Setting up your own formula in MS-Excel.
08	Sort and Filter Data with Excel, Sort and filtering data Using number filter, Text filter, Custom filtering, Removing filters from columns, Conditional formatting.
09	To Create Effective Charts to Present Data Visually Inserting Column, Pie chart etc. Create an effective chart with Chart Tool, Design, Format, and Layout options, Adding chart title, Changing layouts, Chart styles, Editing chart data range Editing data series,
10	Making presentation which demonstrates use of Hyperlinks in MS-Power Point.
11	Inserting -Images, Clip Art, Audio, Video, Objects, Tables and Charts in MS-Power Point.
12	Inserting - Background, textures, Design Templates, Hidden slides. Auto content wizard, Slide Transition, Custom Animation, Auto Rehearsing in MS-Power Point.

Suggested References:

- 1. Microsoft Office 97: Will Train, Gini Courter, Annette Marquis BPB Publication.
- 2. MS Office 2000 for Everyone : Saxena Sanjay, s schnd
- 3. Writer's Guide to Microsoft Word : Kari Holloway
- 4. Access 2016 Bible : Michael Alexander, Richard Kusleika
- 5. Excel 2019: Greg Harvey 6. Microsoft Powerpoint Made Easy: Chris Smith

Suggested Digital Platforms, Web links

- 1. http://www.digimat.in/nptel/courses/video/121106007/L12.html
- 2. https://www.webucator.com/how-to/how-use-mail-merge-microsoftword.cfm
- 3. https://support.microsoft.com/en-us/office/create-pivottable-orpivotchart-views-in-an-access-desktop-database-83e524df-dfbd-456d9dd0-0a48c1aa6752
- 4. https://support.microsoft.com/en-us/office/create-a-pivottable-toanalyze-worksheet-data-a9a84538-bfe9-40a9-a8e9-f99134456576